

HEI-003-1101003

Seat No.

M. Sc. (Chemistry) (Sem. I) (CBCS) Examination November / December - 2017

Physical Chemistry: Paper - C - 103

(New Course)

Faculty Code: 003

Subject Code: 1101003							
Time:	$2\frac{1}{2}$ H	[ours]			[Total I	Marks : 70	
Instru	ctions	` '	All questions	-	•		
1 Ar	nswer t	he foll	lowing: (any s	even)			
(a)		ne : Fu mical o	gacity, Thermo cell.	dynamic proba	bility, Ioni	ic strength,	
(b)	Fill	in the	blanks :				
	(i)		solubility of sp nce of an inert		ole salt _	in	
	(ii)		ional partition	function depe	ends on te	mperature	
	(iii)	The t	otal-pressure o	of binary solu	tion varie	S	

(iv) The activity of a solution is equal to the product of concentration and _____.

with mole fraction of any constituent in vapor phase.

- Explain Debye-Huckel equation for concentrated solutions. (c)
- Discuss zinc silver accumulator. (d)
- (e) State the assumptions made in the derivation of Boltzmann distribution law.
- Define Raoult's law and dilute solution. What is the difference (f) between ideal solution and dilute solution?
- Discuss the effect of pressure on fugacity of mixture of gases. (g)
- Show that internal energy E = 3/2 RT for monoatomic gas (h) and E = RT for diatomic gas.
- Derive an expression relating Partition function and work (i) function.

- (j) In 100 g of water, when 10 g of a substance of molecular weight 186 is dissolved, it lowers the freezing point by 1 °C. Calculate the molal freezing point constant of water.
- 2 Write notes on: (any three)
 - (a) Applications of Debye-Huckel limiting equation
 - (b) Graphical method for the determination of fugacity of a gas
 - (c) Properties of ideal solutions
 - (d) Lead accumulator.
- **3** (a) Derive an expression : $\beta = 1/kT$.
 - (b) Discuss the effect of inert electrolyte on the solubility of sparingly soluble salt. Following data are given for the mean ionic activity coefficient for an acid:

m:	0.001	0.005	0.01	0.02	0.05
$\gamma \pm :$	0.966	0.928	0.905	0.875	0.830

Determine the mean ionic diameter (a) graphically provided that B is 0.329×10^8 .

OR

- **3** (a) What is liquid junction potential? Derive an expression for the determination of liquid junction potential.
 - (b) Derive an expression for the determination of fugacity by equation of state method. Utilize the following data to calculate fugacities of a gas at various pressures at 0 °C.

P:	50	100	200	400	800	1000
PV/RT:	0.9846	0.9946	1.0365	1.2552	1.7959	2.0641

- 4 Answer the following: (any three)
 - (a) Derive an expression for the determination of mean activity coefficient for a dilute solution.
 - (b) Discuss equilibrium constant of metathetic reactions.
 - (c) Explain Lewis Randell's rule.
 - (d) Derive the expression : $P = p_2' + N_1 \left(p_1' p_2' \right)$

- **5** Answer the following: (any two)
 - (a) Discuss The Sackur-Tetrode Equation.

Calculate the rotational partition function for ammonia at 25°C. ($I_A = 2.78 \times 10^{-40}~g.~cm^2,~I_B = 0.78 \times 10^{-40}~g.~cm^2,~I_C = 4.33 \times 10^{-40}~g.~cm^2,~k = 1.3803 \times 10^{-16}~ergs~K^{-1}$ and $\sigma = 3$)

(b) Discuss the effect of temperature on solubility of gases in solution.

The melting point of p-chlorobenzene is 53.2 °C and that of naphthalene is 80.2 °C. The eutectic temperature is 30.2 °C when mole fraction of naphthalene in liquid phase is 0.394. Calculate the molar heat of fusion of two components of the system assuming ideal behavior.

- (c) Discuss chemical cell without transference in detail.
- (d) Discuss in detail the elevation in boiling point of a dilute solution.